
Digital Object Identifier no. 10.1109/TVCG.2023.3326930

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024 153

Manuscript received 31 March 2023; revised 1 July 2023; accepted 8 August 2023.
Date of publication 26 October 2023; date of current version 21 December 2023.

1077-2626 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

QEVIS: Multi-grained Visualization of Distributed Query Execution

Qiaomu Shen, Zhengxin You, Xiao Yan, Chaozu Zhang, Ke Xu, Dan Zeng, Jianbin Qin, Bo Tang

d2

All machines

d1

d3

d

Re-execute

f

b

b1

b

c

e1

e

Tasks of M1

a

Fig. 1: The UI of QEVIS consists of multiple complementary views. (a) Query list displays all queries and enables query selection for
analysis. (b) Job view depicts the execution progress of the jobs in a query and their dependencies for an overview of query execution.
(c) Performance matrix reveals anomaly degrees of jobs and machines, facilitating the rapid identification of execution anomalies. To
reason about the anomalies: (d) task view plots the distribution of atomic tasks. (e) entity list reports detailed task execution statistics.
(f) Profiling view presents hardware status. These coordinated views collectively enhance the exploration of query execution dynamics.

Abstract—Distributed query processing systems such as Apache Hive and Spark are widely-used in many organizations for large-scale
data analytics. Analyzing and understanding the query execution process of these systems are daily routines for engineers and crucial
for identifying performance problems, optimizing system configurations, and rectifying errors. However, existing visualization tools for
distributed query execution are insufficient because (i) most of them (if not all) do not provide fine-grained visualization (i.e., the atomic
task level), which can be crucial for understanding query performance and reasoning about the underlying execution anomalies, and
(ii) they do not support proper linkages between system status and query execution, which makes it difficult to identify the causes
of execution problems. To tackle these limitations, we propose QEVIS, which visualizes distributed query execution process with
multiple views that focus on different granularities and complement each other. Specifically, we first devise a query logical plan layout
algorithm to visualize the overall query execution progress compactly and clearly. We then propose two novel scoring methods to
summarize the anomaly degrees of the jobs and machines during query execution, and visualize the anomaly scores intuitively, which
allow users to easily identify the components that are worth paying attention to. Moreover, we devise a scatter plot-based task view
to show a massive number of atomic tasks, where task distribution patterns are informative for execution problems. We also equip
QEVIS with a suite of auxiliary views and interaction methods to support easy and effective cross-view exploration, which makes it
convenient to track the causes of execution problems. QEVIS has been used in the production environment of our industry partner, and
we present three use cases from real-world applications and user interview to demonstrate its effectiveness. QEVIS is open-source at
https://github.com/DBGroup-SUSTech/QEVIS.

Index Terms—visual analytics system, distributed query execution, performance analysis

• Qiaomu Shen, Dan Zeng, and Bo Tang are with Research Institute of
Trustworthy Autonomous Systems, Southern University of Science and
Technology. E-mail: {shenqm, zengd, tangb3}@sustech.edu.cn.

• Zhengxin You, Xiao Yan, Chaozu Zhang and Bo Tang are with Department
of Computer Science and Engineering, Southern University of Science and
Technology. E-mail: {12250078@mail.,yanx@,
12132372@mail.}sustech.edu.cn.

• Ke Xu is with Huawei Technologies Co., Ltd. E-mail: xuke81@huawei.com.
• Jianbin Qin is with Shenzhen Institute of Computing Sciences, Shenzhen

University. E-mail: qinjianbin@szu.edu.cn.
• Dr. Bo Tang is the corresponding author.

1 INTRODUCTION

Distributed query processing systems such as Apache Hive [49],
Spark [2], and Flink [15] support scalable data analytics on many
machines [49,50]. With a SQL-like interface on top of parallel data pro-
cessing frameworks (e.g., MapReduce [21] or Tez [42]), these systems
enable users to run queries with SQL semantics instead of implementing
low-level parallel computing programs. For engineers and develop-
ers working with these systems, analyzing and optimizing distributed
query execution are daily routines. Frequently asked questions include
“Where does the query execution time go?”, “What is the performance
bottleneck of the executed query?”, and “Why does the query run slower
than expected?”. Answering these questions requires a comprehensive
understanding of the query execution process, thus, it is challenging
even for experienced engineers. This is caused by the inherent com-
plexity of distributed query execution, e.g., there are many parallel
tasks (i.e., the atomic unit of query execution), and machine status and

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024154

concurrent programs can influence task execution in subtle ways.

As visualizations allow intuitive interpretation, many visual analytics
tools have been developed to assist the understanding of query execu-
tion, e.g., Tez UI [9], Spark UI [8], and Dr. Elephant [4]. However, the
limitations of these tools are two-fold. (i) Visualization granularity:
most of them only offer a coarse-grained visualization of the query exe-
cution (e.g., the job level) but fine-grained visualization at the atomic
task level is essential for purposes such as tracking deadlocks and de-
tecting data skew. (ii) Tool usability: they provide limited interactions
among different views, and thus users have to frequently switch and
speculate the linkage among the views. The limitations make it difficult
to identify the root causes of abnormal execution behaviors efficiently.

To overcome them, we propose QEVIS, a visual analytics system
that allows an in-depth understanding of distributed query execution
process. QEVIS encompasses a suite of coordinated views that com-
plement each other by visualizing query execution at different granu-
larities. Specifically, the job view displays the execution process of the
Map/Reducer jobs in the query and their dependencies as an overview.
A new temporal directed acyclic graph (TDAG) layout algorithm is
proposed to show the job view compactly and clearly. Then, novel
anomaly scores are designed and visualized in the performance matrix
to help users identify suspicious jobs and machines. Next, the exe-
cution status of the atomic tasks is shown in the task view, where a
scatter-plot-based visualization allows users to observe the patterns of
the tasks and identify the noteworthy tasks. We also incorporate a suite
of auxiliary views to assist the users to reason about the discovered
abnormal patterns. In particular, the entity list shows the statistics
and detailed information of the components in query execution (e.g.,
job, task, and machine), and the profiling view is aligned with the task
view to help users associate machine status with task execution. We
implement well-coordinated linkage mechanisms for related items in
different views and provide flexible interactions to navigate among the
views, which makes interactive visual exploration easy.

QEVIS has been tested in the many real-world applications, which
helps the engineers gain intuitive understandings of the query execution
process and easily identify the problems in query execution. QEVIS
is primarily developed for Apache Hive, however, its architecture and
design elements (e.g., job view and task view) can be adapted to other
systems, including Spark and Flink, that use Directed Acyclic Graph
(DAG) as their computational abstraction.

In particular, we make the following contributions:

• Multi-grained visualization framework for query execution.
We summarize comprehensive design requirements for the visual
analysis of query execution and propose a visualization framework
where multiple views complement each other by visualizing query
execution at different granularities.

• New layout algorithm to depict execution overview. We design
a novel algorithm to visualize the execution process of the jobs in
the query plan and their dependencies. Compared with existing
solutions, our approach optimizes the job layout to display the logic
structure clearly while utilizing a smaller rendering space.

• Novel scoring methods to identify execution anomalies. We
devise two scoring methods to evaluate the anomaly degree of the
tasks spawned by a job. Different from existing scores that consider
a specific anomaly, our scores generalize across different anomalies
by measuring how far query execution deviates from the ideal case.

• Scatter-plot-based visualization to show massive tasks. We
propose a scatter-plot-based visualization to display the execution
details of massive atomic tasks. Compared with existing timeline-
based visualizations, our visualization shows the distribution of
the massive tasks intuitively and allows users to easily observe
important normal/abnormal patterns in query execution.

• Visual analytics system to coordinate multiple views. We build
QEVIS for Apache Hive, which properly coordinates the visualiza-
tions discussed above. Cross-view linkage and rich interactions are
provided to support flexible navigation among the views.

Machine 1t1M1 t2M1 t1R2

Machine 2t3M1 t1M5 t3M4

Machine 3t1M4 t2M4 t2R2

t4R2 t7R2 t1R3

t3R2 t5R2 t6R2

t5R2 t8R2 t2R3

t4R3 t5R3

t3R3

Query optimizer / Execution engine

Resource scheduler

(a) SQL query

(b) Logical plan

(c) Scheduling and executing tasks of each job

Fig. 2: The workflow of distributed query execution in Apache Hive

2 BACKGROUND

To provide background for subsequent discussions, we take Apache
Hive as an example to introduce distributed query execution process.

Figure 2 depicts the workflow of query execution in Apache Hive.
When a query (e.g., the SQL-like statement in Figure 2(a)) is issued
to the system, the query optimizer (e.g., Calcite [12]) and parallel
execution engine (e.g., Tez [42]) optimize the query to a execution plan,
which is the direct acyclic graph (DAG) of Map/Reducer jobs shown
in Figure 2(b). Each Map or Reducer job in the DAG can be divided
into three phases: (1) input, (2) processing, and (3) output. The input
phase loads data from disk or upstream jobs. The processing phase
executes a sequence of SQL operators, for example, the processing
phase of Map 1 encompasses three SQL operators: table scan (TS),
filter (FIL), and select (SEL). The output phase generates the output
data, which can be the final result or input data for downstream jobs.
The dependencies among the jobs are determined by their input/output
relation and modeled by the edges in the DAG.

To run each Map/Reducer job, the execution engine (e.g., Tez) in-
stantiates a set of tasks. All tasks of a specific Map/Reducer job run the
same sequence of operators but work on different data partitions. For
example, the execution engine instantiates three tasks, e.g., tM1

1 , tM1
2 ,

and tM1
3 (the gray cells in Figure 2(c)) for job Map 1 in Figure 2(b).

Each task is scheduled to run on an executor (e.g., container in Apache
Hive), which is a logical collection of physical resources (e.g., CPU and
memory) on one machine in the cluster, by the resource scheduler (e.g.,
Yarn [51]). Task is the atomic unit for execution and scheduling, and
the tasks of different jobs can run on the same machine. For example,
as illustrated in Figure 2(c), both tM1

1 (a task of Map 1) and tR2
1 (a task

of Reducer 2) are executed on Machine 1.
Referring to the workflow in Figure 2, many research work mainly

focuses on visualizing query logic (Figure 2(a)) and optimization plans
(Figure 2(b)). These studies are very helpful in finding bugs in query
logic or optimization. QEVIS is orthogonal to them as it analyzes
query execution traces (Figure 2(c)) in a distributed environment, and
identifies the performance issues that might be caused by the scheduling
mechanism, resources, or hardware, etc.

3 RELATED WORK

In this section, we summarize the related work into two categories:
query execution diagnose and visual understanding for query execution.

3.1 Query Execution Diagnose
Many systems [1, 4, 28, 35, 36, 48, 54] design dedicated scores and
algorithms to diagnose problems in query execution. For example, Dr.
Elephant [4] uses configurable rule-based heuristics to evaluate queries
executed on Hadoop or Spark and gives suggestions (e.g., increasing
virtual memory) to improve query performance. PerfXplain [30] offers

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

155shen eT AL.: QeVIs: MuLTI-grAIned VIsuALIzIng of dIsTrIbuTed Query execuTIon

a query language to express performance queries, along with a decision
tree-based algorithm that generates explanations by analyzing a log of
query executions. DBSherlock [54] allows users to select a time range
that contains anomalies and analyzes the execution statistics and system
configurations to explain the anomalies with a causality-based model.
iSQUAD [36] requires users to label abnormal queries and then perform
root cause identification using a Bayesian model. PerfDebug [48] is a
specialized tool designed to analyze computation skew issues. Using
data provenance-based techniques, it can automatically identify the
records responsible for abnormalities. We refer interested readers to
a comprehensive survey [23] on database query debugging. These
systems work as a black-box that delivers the final diagnosis results
(which may be inaccurate) without providing evidence. Moreover,
their scores and algorithms are designed for specific anomalies, e.g.,
garbage collection time and data skew, but it is difficult to define a
complete set of anomalies beforehand in practice and the causes of
execution problems can be complex. Instead of considering a specific
anomaly, the anomaly scores in QEVIS generalize across anomalies
by measuring how far query execution deviates from the ideal case.
Moreover, QEVIS provides multiple views and allows to identify the
evidence and causes of execution anomalies via interactive exploration,
which is more suitable for handling complex execution problems.

3.2 Visual Understanding for Query Execution

Understand query statement and logical plan. As explained in Sec-
tion 2, a query is transformed into a logical plan before execution.
In real-world applications, queries often stem from adjusting existing
SQL templates and can be complex and challenging to comprehend.
Prominent methods such as GraphSQL [16], Visual SQL [27], and
QueryVis [31] employ node-link diagrams to visualize the topologi-
cal structure of query sub-steps. Notably, GraphSQL [16] and Visual
SQL [27] propose visual query languages to facilitate interactive query
visualization and adjustment. QueryVis [31] and STRATISFIMAL
LAYOUT [19] introduce visual formalisms that offer expressive vi-
sual encodings of SQL query meanings while minimizing redundant
visual elements to enhance query logic clarity. Node-link diagrams
are also commonly used to represent the logical structures of execu-
tion plans, which can be modeled as trees or DAGs [8, 9, 11, 39, 46].
Perfopticon [39], for instance, utilizes a nested node-link diagram to
demonstrate the hierarchical structure of the logical plan for Myria [26] ,
a distributed big data system similar to Hive. Understanding query logic
and execution plans is crucial for diagnosing query and optimization
logic bugs, an aspect distinct from our primary focus. Understanding
query logic and execution plans plays a critical role in diagnosing bugs
associated with query and optimization logic. Nevertheless, our re-
search supplements this area but primarily does not focus on it. QEVIS
leverages dagre [3], a DAG layout library, to visualize query logic and
optimization plans, enabling users to inspect them as required.
Understand query execution progress. The execution process of
a query can be modeled as a sequence of job or task events with
dependencies. We briefly discuss representative visualization methods
for event sequence and refer interested readers to a comprehensive
survey in [25]. Gantt chart-based visualizations are commonly used
to show execution progress and widely adopted by execution trace
visualization tools [8,9,11,20,33,34,39–41,43,53]. These works often
organize the tasks executed by the same executor (e.g., CPU) into a
row and utilize links to mark the relations between tasks [40, 41, 53].
Gantt chart-based visualizations are effective and intuitive when the
number of tasks is small but they become cumbersome when there
are many tasks [45], which is usually the case for distributed query
execution. For instance, as relations are displayed as links, the crossing
of many links can result in severe visual clutter, which makes the
visualization difficult to read. Other Chart-based visualizations such as
line-chart or scatter plot, are employed to show trends and distributions
of events [18, 24, 37, 38, 45, 52]. Line charts are widely used to show
the trend of performance metrics or aggregated metrics of resources
measured during the execution process [22, 29, 32]. The scatter plot
technique is commonly employed to provide a high-level overview of
event sequences or event groups by projecting them onto a 2D canvas

using dimension reduction techniques or selected attributes [24, 37, 45,
52]. In addition to depicting distributions, scatter plots are also utilized
for outlier identification [18, 38]. One advantage of the scatter-based
design is its scalability, allowing for effective visualization of large-
scale event datasets. For instance, scatter plots have been effectively
employed to identify important patterns in large-scale MPI (Message
Passing Interface) events using various encoding strategies [45], which
has inspired our task view design. Taking inspiration from existing
approaches, QEVIS incorporates both Gantt-chart-based and scatter-
based visualizations to accommodate the requirements of visualization
at different scales. For the high-level visualization, where the scale is
relatively small, QEVIS employs a Gantt-chart enhanced with links
to intuitively display the execution of jobs and their dependencies.
When dealing with a large number of tasks, QEVIS implements a
scatter-based visualization design to effectively manage the complexity.
Interactive analytic tools. As discussed in Section 2, the query execu-
tion process is complex, and thus a fixed visualization is insufficient for
understanding. DBSherlock [54] and iSQUAD [36] provide a visual
interface that allows users to interactively select queries or time ranges
with anomalies, and design algorithms to find the causes of the anoma-
lies. Open-source tools such as TezUI [9] and SparkUI [8] allow users
to observe the execution plan, execution progress, and other aspects of
query execution in separate views. However, these tools lack cross-view
linkage and flexible interactions, which makes it difficult for users to
diagnose execution problems caused by complex reasons. VQA [46] is
capable of monitoring and visualizing the real-time execution process
of an input query. However, it is only limited to the single-machine en-
vironment. Perfopticon [39] is a work highly relevant to QEVIS, which
utilizes four coordinated views to meet the complex analytical needs
of analysts and a multi-granularity analysis approach to showcase the
execution process of queries. The advantage of Perfopticon lies in its
ability to associate operator execution with query execution, enabling
analysts to examine the performance issues caused by operator logic.
Additionally, Perfopticon allows users to view the execution status
of a given fragment on each worker, quickly identifying which work-
ers may be stragglers during fragment execution. Different from the
worker-based analysis in Perfopticon, the analysis approach of QEVIS
is task-based. Specifically, the execution engine instantiates a given
job as a set of tasks which are then assigned to workers for execution.
QEVIS visualizes patterns of a large number of tasks to reveal issues
in the query execution process. Moreover, QEVIS takes into account
the dependencies between jobs and tasks, enabling analysts to more
accurately analyze performance issues related to dependencies, such
as abnormal waits and deadlocks. Furthermore, QEVIS introduces
modules such as anomaly scoring and system profiling, which help
analysts conduct causality analysis more efficiently.

4 DESIGN TASKS OF QEVIS
The QEVIS project follows the guidelines of the design study method-
ology [44]. To start, we conducted semi-structured interviews with
potential users of QEVIS from various backgrounds and collected
the questions they commonly encounter in daily work. Then, we se-
lected four domain experts as long-term collaborators, including two
researchers (P1, P2) from academia and two engineers (P3, P4) from
industry. P1 works on big data and database systems, while P2 focuses
on query optimization. P3 is the leader of a team that focuses on cloud
computing. P4 is a senior engineer working on distributed query system
maintenance. Note that P1 is also an author of this paper. According to
the feedback from potential users and domain experts, we formulate
three major design requirements for QEVIS as follows:
R1. Understand query execution. Query execution can be understood
at two scales: job scale and task scale. As an overview, the timing
information of the jobs and their dependencies can provide a big picture
of query execution. In this view, the analysts can know the general
time usage of each high-level component and identify execution bot-
tlenecks by analyzing the job dependencies. To gain a more accurate
and comprehensive understanding of the query execution process, a
micro-level view is necessary. This involves visualizing the execution
progress and data dependencies of the atomic tasks. Such detailed

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024156

visualization enables analysts to identify the required optimizations and
explore potential solutions for addressing the bottlenecks.
R2. Identify the component worth paying attention to. Identifying
key components is crucial for analysts to effectively navigate among the
multiple levels of granularity. To facilitate this process, it is necessary
to provide sufficient information that enables analysts to pinpoint the
essential jobs, machines, and tasks that should be explored.
R3. Reason about specific execution patterns. After identifying the
suspicious jobs or tasks, the next step is to find the reasons that cause
their abnormal behavior. To accomplish this, analysts should analyze
the execution of jobs and tasks, along with relevant information such
as machine profiling. Moreover, all of the information should be appro-
priately visualized and coordinated to enable effective explorations.

Based on the requirements above, we formulate the design tasks as:
T1 Multi-grained visualization. To help analysts understand the
query execution process (R1) and identify the key components (R2),
it is necessary to display the execution process and key attributes at
different granularities with effective visual designs:
T1.1 Show the overview of query execution. QEVIS should ef-

fectively visualize how the query logical plan is executed as an
overview of query execution. Specifically, the timing information
(e.g., start time, end time, and time usage) of each job should be
shown intuitively for users to understand which components are
time-consuming (T1.1.1). Other attributes such as the task paral-
lelism and time usage percentage of each sub-phase of a job should
be provided when users inspect a specific job (T1.1.2). Moreover,
the dependencies of the jobs should be shown clearly for analysts
to know the logic position of a specific job (T1.1.3).

T1.2 Support fine-grained task-level analysis. QEVIS should ef-
fectively visualize the timing information of many atomic tasks
(T1.2.1) and their dependencies (T1.2.2). The different execution
statuses should be revealed by distinctive visual patterns provided
by the system. Moreover, the users should be able to identify the
key tasks affecting the whole execution progress and drive the
potential problems causing the performance issues.

T2 Anomaly score and visualization. To help users navigate among
different analysis granularities and identify the components that are
worth paying attention to (R2), general anomaly scoring methods
should be integrated to find the jobs and machines that have abnor-
mal behavior and effectively narrow down the scope of analysis.
T3 Enable pattern reasoning. To reason about the execution patterns
(R3), auxiliary information (e.g., such as data and system profiling)
should be provided on demand, and this information should be properly
linked with the execution visualizations for interactive exploration.
T3.1 Provide rich auxiliary information to reason about execution

anomalies. QEVIS should provide auxiliary information to help
users understand query execution process and interpret anomalies.
The distribution of task attributes, such as data input, data output
and time usage, should be provided to reason about system behavior
(T3.1.1). Moreover, machine profiling (e.g., memory and CPU
usage) should be visualized jointly with the tasks such that users
can correlate task execution with machine status (T3.1.2).

T3.2 Provide coordinated linkage among different views. When
inspecting a specific pattern or abnormal component, users need
to switch among different views. Related components (e.g., job,
task and machine) in different views should be well linked to make
interactive exploration easy.

5 THE QEVIS SYSTEM

The architecture of QEVIS is illustrated in Figure 3. In this section, we
first introduce the system architecture in Section 5.1. Then we discuss
data model of QEVIS in Section 5.2 and elaborate on the visualization
designs in Section 5.3.

5.1 System Architecture
We developed a prototype of QEVIS and kept improving it according
to user feedback. Figure 3 illustrates the final system architecture and
analysis pipeline of QEVIS. The system consists of three modules for

Data collection module
Stream log engine

Data analysis module

Visualization and interaction module

Distributed
system

Database

Anomaly scoring

APS

ADS

User

Job view Performance matrix

SQL Query

Entity listTask view/profiling

Fig. 3: QEVIS system includes three modules: (1) data collection module,
(2) data analysis module, and (3) visualization and interaction module

(1) data collection, (2) data analysis, and (3) visualization and inter-
action. When users run a query, the data collection module collects
and processes incoming query execution logs with the stream log en-
gine. Specifically, it persists the basic information and passes logs to
the database until execution status indicators (i.e., Pause, Terminate,
Complete, Timeout) are detected. To monitor query execution at run
time, the stream log engine redirects processed logs to the frontend
for visualization. In the meantime, the logs are stored in a database
to enable in-depth analysis of completed queries. The data analysis
module reads data from the database and calculates anomaly scores.
The visualization and interaction module displays the query execution
process and provides rich interactions to support interactive exploration.

5.2 Data Model
As introduced in Section 2, a query is converted to a DAG of
Map/Reducer jobs during query execution. We denote the DAG as
G(J,R), where J is the node set, and each node is a Map or Reducer job
in the logic execution plan; R is the edge set, which models the depen-
dencies among the jobs. For each atomic task, we divide its execution
process into three phases : (1) input, (2) processing, and (3) output, for
fine-grained analysis. We use texe = {(ti

s, t
i
e),(t

p
s , t

p
e),(to

s , t
o
e)} to denote

the start time and end time of each phase in task t. Thus, the data model
of task t is a tuple ⟨ts, te, t j, tm, texe⟩, which are the task’s start time, end
time, job identifier, machine identifier and the execution phases, respec-
tively. The data model of each job is a tuple ⟨ js, je⟩, which are the job’s
start time and end time, respectively. A job has many tasks, for job x,
its start time js is defined as the earliest start time of all its tasks, i.e.,
js = min{ts|t j = x}, and its end time je is the latest end time of all its
tasks, i.e., je = max{te|t j = x}. With the data model above, the original
job DAG is augmented to a temporal DAG (TDAG), which contains
start/end time for each job and is key to query execution analysis.

5.3 Visualization Designs in QEVIS
Figure 1 illustrates the user interface of QEVIS. With a selected query
from the query list (Figure 1(a)), job view (Figure 1(b)) appears to
provide the overview of query execution (T1.1). We devise a novel al-
gorithm to show the timing information of jobs and their dependencies,
which is elaborated in Section 5.3.1. In Section 5.3.2, we provide a
performance matrix (Figure 1(c)) to show the anomaly degree of the
jobs and machines. Performance matrix helps users quickly narrow
down to the jobs and machines worth paying attention to (T2). In Sec-
tion 5.3.3, we design the task view (Figure 1(d)) to support fine-grained
task analysis (T1.2). In Section 5.3.4, we present the auxiliary views
for detailed information (T3.1) and cross-view linkages (T3.2).

5.3.1 Job view
To effectively visualize the progress of job execution, it is essential to
display the timing information, including start time, end time, and time
usage, as well as the dependencies among jobs in the query logical plan
(T1.1.1 and T1.1.3). This data can be modeled as a DAG enhanced
with temporal information (TDAG). Existing tools (e.g., TezUI and
SparkUI) enhance traditional Gantt chart with links to visualize the
TDAG. This solution is limited because (i) it does not consider the
visual clutter caused by the many job dependencies in the execution

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

157shen eT AL.: QeVIs: MuLTI-grAIned VIsuALIzIng of dIsTrIbuTed Query execuTIon

(c) Our solution for TPC-DS Q5 (d) Our solution for TPC-DS Q54

(a) TezUI for TPC-DS Q5 (b) TezUI for TPC-DS Q54

Fig. 4: Comparing TDAG layout methods

1

2

3

4

5

6 7

1

2

4

7

3

6

(a) Job DAG

1

2

4

7

3

5

6

1

2

4

7

3 5

6

(b) Job tree
3

(c) Job layout
time

(d) Dependency layout

(e) Layout refinement

1

2

3

4

5

6 7

61

5

0

Fig. 5: Workflow of our TDAG layout algorithm

plan; and (ii) it does not scale to large TDAG as screen space is not
utilized efficiently. Figure 4 (a) and Figure 4(b) show its visualizations
for the TDAG of TPC-DS query 5 and 54, respectively. The edges and
nodes are crossed in Figure 4(a) due to complex job dependencies, and
there is a large blank space in the left bottom part of Figure 4(b).

To tackle the two challenges, we propose a novel TDAG layout
method illustrated in Figure 5. It includes the following steps:
• Step 1. We first simplify the job DAG, see Figure 5(a), to a job

dependency tree in Figure 5(b). In particular, the output of a job
can be the input of many jobs (e.g., ≥ 2 jobs), and we only preserve
the edge from a job to its out-neighbor job with the earliest start
time. For example, the output of job 1 serves as input for jobs 4
and 6 but the start time of job 4 is earlier than job 6. Thus, we
only keep the edge from job 1 to job 4 in the simplified job tree in
Figure 5(b). TDAG simplification is conducted to (i) preserve the
starting time order of the jobs, and (ii) keep dependent jobs close
to each other to prevent visual clutter.

• Step 2. We then plot a rectangle for each job by using the length of
the rectangle to indicate job duration and sort the jobs by their start
time, as shown in Figure 5(c). This follows human reading habit
(i.e., reading from top to bottom) and plots the job starting earlier
in a higher position.

• Step 3. We next adjust the layout of jobs by utilizing the job
dependencies in the simplified tree. In particular, we check the jobs
the top to bottom. For each job, if its out-neighbor job could be
placed in the same row with it (i.e., non-overlapping), we move
the out-neighbor to the same row with it, and add an edge between
these two jobs. For instance, the time duration of job 1 does not
overlap with the time duration of its out-neighbor job 4, thus we
plot jobs 1 and 4 in the first row, see Figure 5(c).

• Step 4. Last, we refine TDAG layout by (i) adding the other edges
in the job DAG, for example, jobs 1 and 6 in Figure 5(e), and (ii)
reducing the space by combining the rows that do not overlap, for
example, job 3 and job 5 are plotted in the same row in Figure 5(e).

We visualize the TDAG of TPC-DS query 5 and query 54 by our
TDAG layout algorithm in Figure 4(c) and Figure 4(d), respectively.
When compared with the visualizations produced by Tez UI Figure 4(a)
and Figure 4(b), the visualization generated by our approach offers two
advantages: (1) our visualization takes into account the topological
structure of the execution plan, resulting in reduced visual clutter as
there are fewer crossings among the links and rectangles; (2) our pro-
posed visualization optimizes screen space utilization by considering
both dependencies and time duration, allowing for a more efficient

(g) CDF of anomalous execution
(ADS : 0.755)

Cumulative distribution

Normalized time cost
(f) CDF of normal execution

(ADS : 0.505)

Cumulative distribution

Normalized time cost

(e) PDF of anomalous execution

Distribution

Time cost (ms)

{Long tailed tasks

(d) PDF of normal execution
Time cost (ms)

Distribution

(c) Low parallelism
(APS : 0.793)

Timeline (s)

Task 1

Task 7

Task 2
Task 3
Task 4
Task 5
Task 6

Task 8
Task 9

Task 10

Task 12
Task 11

0 5 10 15 20 25 30 35 40 45 50 55 60
Timeline (s)

Task 1

Task 7

Task 2
Task 3
Task 4
Task 5
Task 6

Task 8
Task 9

Task 10

Task 12
Task 11

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) High parallelism
(APS : 0.583)

ADS of tasks: 0.755

APS of tasks: 0.793

(a) Design of anomaly glyph

Anormaly score of tasks

Anormaly score of phases

of OutputADS

APS of tasks
ADS of tasks

ADS of Input
ADS of Processing

Fig. 6: Illustration of anomaly scores

visualization.
We enhance the job view with two visual designs (i.e., parallelism

and phase mode) to show more information for each job (T1.1.2).
Parallelism mode: we embed the task parallelism (i.e., number of run-
ning tasks) into the job rectangle. Specifically, we use a 1D-heatmap to
visualize the number of active tasks over time, as shown in Figure 1(b).
A gradient color from white to dark blue encodes the number from
one to the maximum number of active tasks for the job. We color the
number zero with a special color (e.g., gray) as zero indicates that the
execution of the job is suspended and users should pay attention.
Phase mode: we visualize the percentage of time used by the three
phases of each job, as shown in Figure 1(b1), and use three colors to
indicate the three phases. This allows users to better understand the
jobs, e.g., classifying them into I/O-bounded or compute-bounded jobs.

5.3.2 Performance matrix
As shown in Figure 1(c), performance matrix is designed to show
the anomaly degree of jobs and machines such that users can narrow
down the scope of exploration (T2). Existing tools [4, 6] propose
different scoring schemes for different anomaly types, e.g., data skew
and memory overload. This approach is limited as it is difficult to
encompass all possible anomalies. We adopt a different approach,
which considers the execution statistics of the tasks and quantifies how
far they deviate from ideal distributed parallel execution. We believe a
component is worth paying attention to if it deviates far from ideal, and
we leave it to the users to determine the specific anomalies by inspecting
the views we provided. In the ideal case, all tasks of a job have a similar
workload and run in parallel, which results in similar time usage and
high parallelism for these tasks. On this basis, we propose two novel
anomaly scores to analyze the tasks of a job, i.e., abnormal parallelism
score (APS) and abnormal duration score (ADS).
Abnormal parallelism score (APS). APS measures how well the
tasks of a job are parallelized, how many jobs share the similar start
time and end time.

For example, the tasks in Figure 6(b) are paralleled better than
the tasks in Figure 6(c) as the tasks are better overlapped in time
and more of them run concurrently. Denote the task set of job j as
Tj = {t j[1], · · · , t j[n]}, the APS of Tj is defined as:

APS(Tj) = 1− ∑n
i=1(t j[i]e − t j[i]s)

n× (je − js)
.

Intuitively, the second term of APS measures the ratio between the area
of all tasks (the bars in Figure 6(b) and Figure 6(c)) over the area of
the job rectangle (the gray area in Figure 6(b) and Figure 6(c)). If all
tasks have the same time usage and run concurrently, APS will be 0,
and thus large APS indicates anomalous. For instance, the APS for the
tasks in Figure 6(b) and Figure 6(c) are 0.583 and 0.793, respectively,
indicating that Figure 6(c) deviates further from the ideal.
Abnormal duration score (ADS). It is observed that the time usage

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024158

of the tasks in a job is usually tightly clustered and unexpectedly long
query execution time is usually caused by a few long-running tasks [47],
which causes a long tail in the time usage distribution. For instance,
Figure 6(d) and Figure 6(e) illustrate the task time usage distribution
of two jobs, and the distribution in Figure 6(e) has a long tail, which
results in a long job time usage.

We use ADS to measure the significance of long tail tasks. Denote
the task set of job j as Tj = {t j[1], · · · , t j[n]} and the time usage of the
tasks as Cj = {c[1],c[2], · · · ,c[m]} when sorted in ascending order. The
ADS of Tj is defined as follows:

ADS(Tj) =
m

∑
i=2

F(c[i]) · (N(c[i])−N(c[i−1]))

where F(c[i]) is the cumulative distribution function of task time usage,
which returns the percentage taken by the tasks with shorter time usage
than c[i] in all tasks, and N(c[i]) = c[i]−c[1]

c[m]−c[1] is the normalized value of
c[i] and is in the range of 0 to 1 for all tasks. Intuitively, ADS measures
the area covered under the cumulative distribution of task time usage,
the gray areas in Figures 6(f) and (g), and long tail tasks will enlarge
the area and ADS. The intuition of the ADS score is measuring the
cumulative distribution of all tasks. The ADS score will be large if
some tasks have unexpectedly long running time. For instance, the ADS
of the tasks in Figures 6(d) and (e) are 0.505 and 0.755, respectively,
indicating that Figure 6(e) has a more severe long tail problem.

We scale the APS and ADS scores of a job j by the time usage of
the job in the entire query, i.e., ρ(j) = je− js

C , where C is the overall
execution time of the query. This allows users to focus on important
jobs because even if a short-running job has execution anomalies, its
influence on the entire query may still be small. Our two anomaly
degree scores are generic and can assist analysis at different levels, e.g.,
job level, task level or phase level. As will be shown later, we also use
them to measure the anomaly degree of the three phases in the tasks.
Visualization designs for performance matrix. As shown in Fig-
ure 1(c), we use a matrix-based visualization to show the anomaly
scores. The x-axis and y-axis correspond to the jobs and machines,
respectively. The first row displays the overall anomaly scores of each
job. The cell in m-th row and j-th column displays the anomaly score
of job j’s tasks that are executed on machine m. We sort the columns
and rows by descending order of their average anomaly score. In cases
where the number of machines or jobs is particularly large, we preserve
only the top k jobs (default value: 30) and top n machines (default value:
10) as specified by the analyst. As illustrated in Figure 6(a), we show
the anomaly scores by Nightingale’s chart [14], which is commonly
used to visualize multi-attribute data [55]. The radius of each sector
represents the value of an anomaly score while the color represents the
granularity (e.g., task- or phase- level) of anomaly. The color encoding
for the phases is coincident with the job progress in Figure 1(b1).

5.3.3 Task view

The task view allows users to analyze the tasks in detail (T1.1.3) and
consists of multiple panels . The panel at the top of task view shows all
tasks of the query, and the remaining panels display the tasks executed
on each machine. Each panel displays the machine id (e.g., dbg19) at
the top and uses a scatter plot-based visualization to plot the tasks as
points in a square view, as shown in Figure 7(a).

The visualization provides two kinds of task information using dif-
ferent parts: (i) Temporal distribution, which depicts the start time,
end time and time usage of the tasks, see the top-right triangle in Fig-
ure 7(a); and (ii) Data dependency distribution, which embeds the
data dependencies among the tasks of different jobs, as shown by the
bottom-left triangle in Figure 7(a).
Temporal distribution. Existing tools (e.g., SparkUI [8] and Inviso [5])
usually employ Gantt chart to visualize the tasks, which are limited
for two reasons: (i) Gantt chart causes severe visual clutter when
visualizing massive (e.g., thousands) tasks; (ii) it is difficult to compare
the time usage of different tasks as Gantt chart lacks proper alignment.

t Time cost of

 Waiting time

St
ar

t t
im

e

End time

(a) Square view

 p (t), t t s eTask

 pd (ti), tk s eData dependency point

(d) Horizontal pattern

(e) Vertical pattern

(b) Parallel pattern

(f) Outlier pattern

(c) Dispersion pattern

(g) Multi-cluster pattern

Fig. 7: Task view and representative patterns

To tackle these limitations, we plot the tasks as points in a square
view. In particular, the x-axis denotes the task start time and the y-axis
the end time, turning task t into a point pt(ts, te). This configuration
of the axes aligns with the conventional reading patterns observed in
humans when browsing websites. We use green and orange colors to
encode the tasks of map and reducer job, respectively. As shown in
Figure 7(a), this scatter point view design has several properties: first,
all points are in the top-right half of the square view because te > ts
holds for all tasks; second, the horizontal distance between the diagonal
line and point pt encodes the time usage of task t, as illustrated by the
dashed line in Figure 7(a). When a user moves the mouse on a task
t, we plot a gray dashed auxiliary line that is parallel to the diagonal
line and intersects point pt to show the time usage of the task. More
importantly, for all tasks of a job, the distribution patterns of the points
in the scatter point view reveal the query execution status and provide
useful hints for the root causes of execution problems. Figures 7(b) to
(g) show the most representative patterns we observed in the production
environment. We provide our observed hints of them below.
• Parallel pattern in Figure 7(b): it suggests that all tasks have

similar time usage, resulting in points that are parallel and close to
the diagonal line. A dense and parallel pattern indicates the query
is executed smoothly.

• Dispersion pattern in Figure 7(c): it means that the tasks of a
job have different start time and end time. It suggests that these
tasks may encounter multiple problems at the same time, such as
insufficient resources, load imbalances, and limited executors, etc.

• Horizontal pattern in Figure 7(d): it means all tasks start at
almost the same time but end at different times. As a special
case of Dispersion pattern, it indicates the number of containers is
enough, since all tasks can be executed at the same time.

• Vertical pattern in Figure 7(e): it shows that the tasks finish
together. The vertical pattern appears typically because these tasks
are all waiting for input data from a same upstream task which is
usually the bottleneck.

• Outlier pattern in Figure 7(f): it reveals that several tasks have
much longer time usage than others. It indicates that these tasks
may suffer from data skewness or deadlock. These tasks are largely
the bottleneck of the query execution.

• Multi-cluster pattern in Figure 7(g): it shows several separated
groups of tasks. It usually indicates the execution of the job is in-
terrupted for a period of time, which is usually caused by hardware
problems or inefficient resources.

Alternative design. Several design alternatives for distribution view
are considered, including the Gantt chart, Marey’s chart and Arc chart,
which have been used in related research work and software. Figure 8
shows the implementation of these designs and our methods with the
same dataset. The green and orange colors indicate Map and Reducer
tasks, respectively. Gantt chart is the most intuitive design to visualize
the tasks through rectangular bars, however, when data is large, the
height of bars will become too narrow to be observed. The other two
designs all use lines (curves) instead of bars to show the temporal
information of tasks. Marey’s chart uses two horizontal axes to indicate
the start time and end time, thus the task can be represented as a line
connecting the two axis. Arc chart uses arcs to show the tasks, with
two end points of the arc indicating the start time and end time. All
these designs work well when the data size is small. However, in our

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

159shen eT AL.: QeVIs: MuLTI-grAIned VIsuALIzIng of dIsTrIbuTed Query execuTIon

(A) Scatter (B) Gantt chart (C) Marey’s graph (D) Arc chart

Fig. 8: Alternative design of task distribution
application, the number of tasks will reach tens of thousands, which
results in different problems for each design. For instance, the height
of bars becomes too narrow to observe in Gantt chart; Marey’s chart
and Arc chart all have serious visual clutter results from the overlap
and cross of lines (curves), especially for Marey’s graph, the orange
lines are too dense to reflect any patterns.
Data dependency distribution. Consider two tasks ti and tk with
data dependency, and the output of ti is used as input by tk. The
start time of tk should be later than the end time of ti in the idle
case but the opposite may happen in abnormal cases (usually caused
by the resource scheduler). To visualize these abnormal cases, we
show the data dependency of ti and tk by plotting point pd(tks, tie)
in the square view. As tks < tie, all these abnormal tasks are in the
bottom-left half of the square view, as shown by the purple points in
Figure 7(a). Thus, the dependency distribution does not interfere with
the temporal distribution, which is in the top-right half. We provide
several interaction mechanisms in task distribution. For example, once
a task is selected, its dependencies, upstream tasks and downstream
tasks will be highlighted in red and blue colors, respectively.

5.3.4 Auxiliary views and interaction designs

We provide a suite of auxiliary views and rich cross-view interactions
in QEVIS to help users explore query execution progress. Due to space
limitation, we only present two auxiliary views (i.e., entity list and
profiling view) and refer the interested readers to our GitHub repository
for the other views (e.g., query list in Figure 1(a)).
Entity list: it shows detailed statistics of each job row by row, shown in
Figure 1(e). Users can click on the triangle at the leftmost side of each
job (i.e., job level) to enter the machine level. By clicking the triangle at
the machine level, all tasks executed by the machine will be listed. To
visualize the features of tasks, we implement two visualization forms,
i.e., rug plot [7] and Gantt chart, that will be selected automatically
based on the features of interest. Besides time usage, entity list also
allows users to select other features of interest (e.g., read/write data
size) through the dropdown at the top of this view.
Profiling view: it is embedded into each panel in the task view and
consists of a suite of visualizations to show execution statistics such as
task parallelism and system hardware usages as illustrated in Figure 1(f).
For single variate features such as task parallelism and memory usage,
we use the line chart, which can show the temporal change of the value.
For multiple variate features such as CPU usage and Disk IO, we use a
heatmap, which is widely used to visualize multiple values.
The design of interactions. QEVIS supports flexible interactions and
cross-view linkage to facilitate multi-view exploration. For example,
when the user hovers the mouse on a job in the job view, shown as the
purple boundary in Figure 1(b), all tasks of this job will be highlighted
in the task view, as purple points in Figure 1(d). Conversely, if the user
hovers the mouse on a task point in the task view, the corresponding job
in the job view and entity list will be highlighted. Moreover, when the
user clicks on points in the task view, the entity list will be expanded to
show the corresponding tasks and execution machines, shown as the
purple items in Figure 1(e). When the user puts the mouse on an element
for more than three seconds, a widget showing detailed information
about the element will be displayed. Shown as Figure 1(d2), when we
put the mouse on the purple task, the task information such as data read,
records processed, and time costs of each phase are displayed.

6 EMPIRICAL EVALUATION

In this section, we show how QEVIS helps domain users understand
query execution and pinpoint problems with three real cases from the

production environment. Subsequently, we invite engineers from our
industry partner to use our system and collect their feedback.

6.1 Case study

QEVIS has been widely used by software engineers for various real-
world applications. Usually, our users are interested in queries that run
longer than expected because they degrade system throughput. In this
section, we demonstrate the effectiveness of QEVIS via three use cases
about slow queries in production, which identifies hardware, system
and data problems during query execution, respectively.

6.1.1 Identifying hardware problem

Figure 1 shows how QEVIS visualizes a long query (i.e., 623 seconds)
from a business intelligence application and we analyze it as follows.
Step 1: investigate the performance bottleneck via job view. As
shown in Figure 1(b), job M1 has a very long running time. More
importantly, there is a large gray region in job M1, which means that
the number of running tasks is 0 in this region according to the design
in Section 5.3.1. Thus, job M1 is the cause of long execution.
Step 2: inspect job M1’s task execution pattern via task view. To
find the reasons that cause the gray region for job M1 in the job view,
we analyze the tasks of job M1 via the task view. When hovering the
mouse on M1, its associated tasks are highlighted with purple color
in the task view, see Figure 1(d). We observe that the tasks of job M1
form two groups (i.e., multi-cluster pattern) that are far away from
each other, as illustrated by the two dashed ellipses in Figure 1(d). The
multi-cluster pattern suggests that the tasks of job M1 are not executed
properly due to machine problems (discussed in Section 5.3.3).
Step 3: locate the problematic machine via entity list. We know
that the long running query is caused by machine problems but it is
difficult to pinpoint the problematic machines as the production cluster
is large. Fortunately, QEVIS provides the entity list to map tasks to
their executing machines. By checking the entity list, as illustrated
by the rows with purple stroke in Figure 1(e1), we observe that the
tasks of job M1 in the right-bottom corner are executed on machine
dbg18 Then, we take a closer look at the tasks executed on dbg18, see
Figure 1(d1). Compared with the other machines (e.g., dbg16, dbg19,
dbg20), the number of tasks executed by dbg18 is quite small, which
suggests that the resource scheduler YARN allocates a small number of
tasks to dbg18. This confirms that dbg18 is the problematic machine
and YARN is aware of this fact during the query execution progress.

Similar analyzing steps are also applied to job M24, which is another
long running job in the query. We find that the long running time of job
M24 is caused by a few straggling tasks on dbg19. By investigating
them, we find that dbg19 has high CPU utilization, see the red regions
of the CPU usage heatmap in Figure 1(f). We omit its analyzed steps
as they are similar to the steps for job M1.

To sum up, hardware problems cause the long running query. To
verify, we remove dbg18 and dbg19, and re-run the query. The running
time becomes 200 seconds. Figure 1(b1) shows the new job view, where
the running time of jobs M1 and M24 are much shorter than before.
Discussion. In this case, the query execution suffers from multiple
hardware issues. The task view of all tasks is crucial in quickly identify-
ing abnormal tasks and the task view of dbg18 shows dbg18 is suffering
from a hardware problem. This scenario demonstrates that the visual
pattern of tasks is helpful in diagnosing these issues efficiently.

6.1.2 Identifying system problem

We analyze a query that generates app downloads report for market
analysis in this case.
Step 1: observe abnormal jobs via performance matrix. As shown
by the performance matrix in Figure 9(a), the anomaly scores of jobs
R3 and M8 are significantly larger than the other jobs, especially the
abnormal duration scores (i.e., red sectors). Moreover, the green sector
(i.e., abnormal parallelism score) of job R3 is also very large. Since job
R3 is the downstream job of M8 as shown in the job view in Figure 9(b),

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024160

d

Maximum task number

Low CPU usage

a

c

b

all machines

Failed tasks Outliers

Tasks of R3
Tasks of M8

Below

After

Abnormal data dependency

M8 R3 M1M16

dbg19

dbg18

dbg16

dbg20

Dependency from M8 to R3

M8 R3

M16 M1

APS of tasks
ADS of tasks

Fig. 9: QEVIS identifies system problem (task deadlock)

we conjecture that there is a causal relation between the abnormal
behaviors of jobs M8 and R3.
Step 2: reveal abnormal data dependency via task view. We next
perform fine-grained exploration on the tasks via the task view. There
are several outliers, as highlighted in Figure 9(c). These outlier tasks
can be classified into two categories: (i) failed tasks (the gray points),
and (ii) long running tasks (highlighted in orange color). Interestingly,
several tasks of map job M8 are executed immediately after these failed
tasks, and then the orange colored tasks of reducer job R3 are executed.
Visually, we can see there are several purple points (i.e., the tasks of
job M8) vertically located below the gray points (i.e., failed tasks)
and the orange points (i.e., tasks of job R3) are horizontally located
after the purple points. Thus, we confirm that there are abnormal data
dependencies among the tasks of jobs M8 and R3, shown as the data
dependency points in the left-bottom part of Figure 9(c).
Step 3: reason about the failed tasks via profiling view. As the
profiling view of the machine is aligned with task view by time, we
observe that both dbg19 and dbg20 run the maximum number of tasks
during the execution period of these failed tasks, see the range between
the two vertical dashed lines for dbg19 and dbg20 in Figure 9(d).
However, the CPU utilization of two machines is very low in this
period. This suggests that the containers of the two machines are fully
occupied but no work is done, and thus there is a task deadlock. In
particular, the scheduler assigns all containers of dbg19 and dbg20 to
the tasks of R3, and these tasks are waiting for the input data from the
upstream tasks of job M8. But the upstream tasks cannot be executed
as there are no idle containers, and thus the tasks of M8 and R3 form a
circular waiting. The deadlock is resolved after killing several tasks of
R3, as depicted by the gray colored failed tasks in Figure 9(c).
Discussion. Deadlocks occur when there is a suboptimal task schedul-
ing. QEVIS addresses this by offering following key features: task
distribution for quick identification of critical tasks, dependency visual-
ization for understanding logical task relationships and alignment of
execution patterns with system profiling to show the interplay between
resources and execution. The conventional approaches may struggle
to manage this situation due to their lack of task oriented visualization
(both task and dependency) and task-system profiling alignment.

6.1.3 Identifying data problem

We next analyze a query that runs daily for sales analysis, which takes
1200 seconds and is longer than before.
Step 1: identify performance bottleneck via job view. We inspect its
job view in Figure 10(a) and observe that the input phase dominates the
running time of job R3. To find the reason for the long input time in
job R3, we examine all its tasks via task view in Figure 10(b).
Step 2: locate the straggler task via task view. We find that (i) all
tasks of job R3 are concentrated in a small region, and (ii) there is a
straggler task of job R2, which are highlighted in blue and purple circles
in Figure 10(b), respectively. Moreover, there is a vertical execution
pattern among the tasks of job R3 and the straggler task of job R2, see

a

b

c

All tasks of R3

A straggler task of R2

Vertical pattern

Fig. 10: QEVIS detects data skew

the dashed eclipse, which suggests that the downstream tasks (of job
R3) are waiting for the upstream task (of job R2).
Step 3: reason about the straggler task via entity list. By clicking
the straggler task of job R2 in the task view, the row of this task is
automatically located and highlighted with a purple boundary in Fig-
ure 10(c). We analyze its long running time by checking its processed
data size, i.e., switching to “SHUFFLE_BYTES” in the dropdown
menu. Surprisingly, the processed data volume of this straggler task is
almost 1000 times of the other tasks in job R2, which indicates a severe
data skew among the tasks. Thus, the above unusually long running
query is caused by data skew problem.
Discussion. This case study highlights a scenario where a single task
acts as the primary bottleneck in the execution process. Although mul-
tiple tasks exhibit abnormal execution behavior, correctly pinpointing
this specific task is vital. This requires a visualization of tasks along
with their dependencies, a feature uniquely offered by QEVIS.

6.2 User Interview
In this section, we discuss the feedback from the users of QEVIS.

6.2.1 Feedback from long term collaborators
The first set of feedback comes from our two long-term collaborators
(i.e., P1 and P2), who helped formulate the design requirements and
tasks of QEVIS in Section 4. The two experts collaborated with us
for more than one year to build and improve QEVIS. We conducted
semi-structured interviews with them face to face and asked them to
evaluate QEVIS according to the design tasks.
Multi-scale visualization. Both P1 and P2 agree that the multi-scale
visualization of QEVIS helps analysts conduct a wide range of query
execution analysis tasks. P2 comments that the design of the job view
is effective for the overview of query execution. He said “the job view
is like a portrait and enables me to quickly comprehend the overall
execution process of a query, which is particularly important when the
same query is executed repetitively.” Both P1 and P2 are satisfied with
the scatter plot-based design of the task view as it shows representative
distribution patterns. P1 said that “it provides a new visual form for
analysts to quickly evaluate query execution and select the tasks of
interest”. However, both P1 and P2 expect more flexible interactions
such as selecting a group of tasks by drawing a polygon and visualizing
the common feature of the selected tasks.
Anomaly scoring and visualization. Both P1 and P2 believe that our
general scoring methods are effective in measuring the anomaly degree.
P1 suggests that the performance matrix complements the job view
when the job view does not provide clear clue for the component to
inspect. P2 claims that he always starts his exploration from the perfor-
mance matrix, which also provides an overview of query execution. In
addition, P2 recommends developing an anomaly score for the entire
query, which provides a high-level summary of query execution and
facilitates comparison between repetitive executions.
Enable pattern reasoning. P1 and P2 think that the design of the entity

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

161shen eT AL.: QeVIs: MuLTI-grAIned VIsuALIzIng of dIsTrIbuTed Query execuTIon

list is effective, especially when using multi-grained visualizations to
explain the tasks with abnormal timing patterns. They also said that
visually correlating system profiling with task execution helps explain
abnormal task execution. However, P1 commented that the task view
and profiling view are too small to inspect. He suggested allowing users
to expand these views to a large separate display when necessary.

6.2.2 Feedback from potential users

Settings. The second set of interviews was conducted with six engi-
neers (E1-E6) in a company to evaluate the usability of QEVIS. None
of these participants used QEVIS before the study. We provided them
with 10 real-world application cases. These cases exhibited various
issues such as insufficient resources, incorrect configuration, and hard-
ware problems. Participants were instructed to freely explore these
cases with QEVIS and draw conclusions regarding the factors con-
tributing to the slow query executions. The study was conducted on
a screen with a resolution of 1980 × 1080, and each session lasted
80 minutes, including a 5-minute demonstration video, a 5-minute
introduction to the study, a 15-minute introduction to QEVIS, and 55
minutes for free exploration. During the study, the participants were
encouraged to think aloud, allowing us to collect feedback in real time.
Then, they were asked to fill out a questionnaire with seven questions:
Q1 Which view is the most important during your exploration?
Q2 Which view do you use the most during your exploration?
Q3 How does QEVIS compare to similar tools you have used?
Q4 How easy is it to learn to use QEVIS?
Q5 How easy is it to navigate and find what you need?
Q6 Do you have any other comments or suggestions?

For Q4 and Q5, the participants can rate the difficulty level on a
scale from 1 to 7, with 1 indicating “very difficult” and 7 indicating
“very easy”. We also encouraged the participants to write down the
reasons for their answers.
Feedback discussion. Regarding Q1, 4 out of the 6 participants identi-
fied the task view as the most important during their exploration. They
noted that they needed to use this view to find the root causes of query
execution anomalies. E1 selected the job view and said that he could in-
spect query execution by switching among different modes. E6 selected
the performance matrix because it indicates the problematic machines.

In response to Q2, 4 out of the 6 participants also selected the task
view as the most used view because they spent a lot of time switching
between the task view and entity list to find the causes of long-running
tasks. The job view and entity list were also selected by one participant.

Regarding Q3, only E1 has not used other query visualization tools
before. E2-5 were familiar with TezUI, while E2 and E6 had expe-
rience with Dr. Elephant. E2 and E3 commented that QEVIS was
more flexible than TezUI due to its interactions. “It can help me to
quickly identify the execution pattern of the tasks in a job”, claimed by
E2. E3 stated that the job view helped him quickly compare different
executions of the same query and he did not need to switch between
different web pages. E6 thought that QEVIS was harder to use than the
automatic query diagnosis in Dr. Elephant but agreed that QEVIS is
more powerful in analyzing complex execution problems. He suggested
integrating more algorithms to measure the anomaly of machines based
on profiling and correlate machine anomalies with task execution.

In response to Q4, the participants gave an average score of 5.6, with
a minimum score of 3 and a maximum score of 7. Participants that have
used other visualization tools tended to be more positive about QEVIS
(E2-5). However, E6, who gave the minimum score, commented that
there were too many visual channels (e.g., color encoding, size, shape)
in QEVIS and it is hard to remember them. He suggested adding more
detailed legends to explain the meaning of the visual encodings.

Regarding navigation (Q5), the participants gave an average score
of 6, ranging from 5 to 7. The participants stated that the cross-view
linkage made it easy to find the elements of interest.

In summary, the user study suggests that QEVIS is a powerful and
user-friendly tool for diagnosing runtime anomalies in distributed query
execution, although there is still room for improvement.

7 DISCUSSIONS AND LESSONS LEARNED

In this section, we discuss the lessons learned from the QEVIS project.
Collaboration. Effective collaboration with domain experts is crucial
for the designs of the domain-specialized visualizations in QEVIS.
By closely observing their problem-solving in real-world contexts, we
can better discern and distill design requirements. It is beneficial for
visualization researchers to immerse themselves in the domain experts’
tasks. Similarly, domain experts should actively provide feedback on
visual designs. For instance, when deciding on coordinate encoding in
the dependency distribution, domain experts recommended displaying
abnormal dependencies at the canvas’s bottom left, ensuring efficient
space utilization and highlighting critical information.
Overview vs. detail view. Choosing the right analysis granularity is
important for solving specific tasks. Logical plan visualization (job
view) is easy to understand and can help solve high-level problems.
Atomic task visualization (task view), on the other hand, contains many
tasks that are executed distributedly and is more difficult to understand.
However, it is usually necessary for solving low-level problems such
as query debugging and execution bottleneck identification. We rec-
ommend that the users choose different visualization granularities on
demand. For instance, novice users can start with logical level visu-
alization for a general understanding of the query execution process
and narrow their exploration progressively, while experienced users can
directly begin with the task view for in-depth analysis.
Generalization. While QEVIS was primarily developed for Apache
Hive, its core components can be broadly applied to various distributed
query systems and parallel computing platforms that utilize the Di-
rected Acyclic Graph (DAG) as their computational paradigm. These
systems include, but are not limited to, Spark, Flink, AsterixDB [10],
Impala [13], SCOPE [17], and Myria. However, it’s important for users
to recognize and accommodate the subtle differences between Apache
Hive and the other systems. Using Spark as an example, it is important
for users to be aware that Spark’s tasks are structured in such a way
that there is no inter-task waiting, since consumer tasks are scheduled
only after all the provider tasks have been completed. Therefore, when
illustrating dependencies, researchers will need to adapt their visual
design strategy, specifically by altering the axis of dependencies.

8 CONCLUSIONS

We propose QEVIS, an interactive visual analytics system for under-
standing distributed query execution. QEVIS incorporates a suit of
views that visualize query execution at different granularities and thus
allows to analyze complex query execution problems. In particular,
we (i) design a new layout algorithm to compactly display the overall
execution progress of the jobs in a query and their dependencies; (ii)
devise two anomaly scoring methods and corresponding visualizations
to show the overall anomaly degrees of the jobs and machines; (iii)
propose a scatter plot-based visual encoding to summarize the massive
atomic tasks and complex data dependencies among them; and (iv)
implement a suite of auxiliary views and rich interactions to support
cross-view exploration. We deploy QEVIS in the production environ-
ment of a company and use it to analyze queries from real applications.
There are two promising future directions: (i) extending the techniques
of QEVIS to other big data systems (e.g., Spark, Flink); and (ii) design-
ing methods to automatically identify query execution bottlenecks and
generate effective solutions to resolve these bottlenecks.

ACKNOWLEDGMENTS

This work is partially supported by the National Key R&D pro-
gram of China (Grant No. 2021YFB3301500), Guangdong Provin-
cial Natural Science Foundation (Grant No. 2019A1515111047),
Shenzhen Colleges and Universities Stable Support Grant (Grant
No. 20200811104054002), Shenzhen Fundamental Research Program
(Grant No. 20220815112848002), the Guangdong Provincial Key Lab-
oratory (Grant No. 2020B121201001) and a research gift from Huawei
Guass department.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 1, JANUARY 2024162

REFERENCES

[1] Cloudera manager: Hadoop administration tool, 2022. https:
//www.cloudera.com/products/product-components/
cloudera-manager.html.

[2] Apache pig, 2023. https://pig.apache.org/.
[3] dagre - graph layout for javascript, 2023. https://github.com/
dagrejs/dagre.

[4] Dr. elephant - monitoring and tuning apache spark jobs on hadoop, 2023.
https://github.com/linkedin/dr-elephant.

[5] Inviso, 2023. https://github.com/Netflix/inviso.
[6] Prometheus, 2023. https://prometheus.io/.
[7] Rug plot, 2023. https://en.wikipedia.org/wiki/Rug_plot.
[8] Spark web ui, 2023. https://spark.apache.org/docs/latest/
web-ui.html.

[9] Tez ui, 2023. https://tez.apache.org/tez-ui.html.
[10] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu,

M. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, et al. Asterixdb: A
scalable, open source bdms. arXiv preprint arXiv:1407.0454, 2014.

[11] L. Battle, D. Fisher, R. DeLine, M. Barnett, B. Chandramouli, and J. Gold-
stein. Making sense of temporal queries with interactive visualization. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pp. 5433–5443, 2016.

[12] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire.
Apache calcite: A foundational framework for optimized query processing
over heterogeneous data sources. In Proceedings of the 2018 International
Conference on Management of Data, pp. 221–230, 2018.

[13] M. Bittorf, T. Bobrovytsky, C. Erickson, M. G. D. Hecht, M. Kuff, D. K. A.
Leblang, N. Robinson, D. R. S. Rus, J. Wanderman, and M. M. Yoder.
Impala: A modern, open-source sql engine for hadoop. In Proceedings
of the 7th Biennial Conference on Innovative Data Systems Research, pp.
1–10, 2015.

[14] L. Brasseur. Florence nightingale’s visual rhetoric in the rose diagrams.
Technical Communication Quarterly, 14(2):161–182, 2005.

[15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

[16] C. Cerullo and M. Porta. A system for database visual querying and query
visualization: Complementing text and graphics to increase expressive-
ness. In 18th International Workshop on Database and Expert Systems
Applications, pp. 109–113, 2007.

[17] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive data
sets. Proceedings of the VLDB Endowment, 1(2):1265–1276, 2008.

[18] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014.

[19] S. Di Bartolomeo, M. Riedewald, W. Gatterbauer, and C. Dunne. Stratisfi-
mal layout: A modular optimization model for laying out layered node-link
network visualizations. IEEE Transactions on Visualization and Computer
Graphics, 28(1):324–334, 2021.

[20] A. Drebes, A. Pop, K. Heydemann, A. Cohen, and N. Drach-Temam.
Aftermath: A graphical tool for performance analysis and debugging of
fine-grained task-parallel programs and run-time systems. In 7th Workshop
on Programmability Issues for Heterogeneous Multicores, Vienna, Austria,
2014.

[21] A. S. Foundation. The apache hadoop project., 2023.
[22] T. Fujiwara, J. K. Li, M. Mubarak, C. Ross, C. D. Carothers, R. B. Ross,

and K.-L. Ma. A visual analytics system for optimizing the performance
of large-scale networks in supercomputing systems. Visual Informatics,
2(1):98–110, 2018.

[23] S. Gathani, P. Lim, and L. Battle. Debugging database queries: A survey
of tools, techniques, and users. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1–16, 2020.

[24] D. Gotz, J. Zhang, W. Wang, J. Shrestha, and D. Borland. Visual anal-
ysis of high-dimensional event sequence data via dynamic hierarchical
aggregation. IEEE Transactions on Visualization and Computer Graphics,
26(1):440–450, 2019.

[25] Y. Guo, S. Guo, Z. Jin, S. Kaul, D. Gotz, and N. Cao. Survey on visual
analysis of event sequence data. IEEE Transactions on Visualization and
Computer Graphics, 28(12):5091–5112, 2021.

[26] D. Halperin, V. Teixeira de Almeida, L. L. Choo, S. Chu, P. Koutris,
D. Moritz, J. Ortiz, V. Ruamviboonsuk, J. Wang, A. Whitaker, et al.
Demonstration of the myria big data management service. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
data, pp. 881–884, 2014.

[27] H. Jaakkola and B. Thalheim. Visual sql–high-quality er-based query
treatment. In International Conference on Conceptual Modeling, pp.
129–139, 2003.

[28] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and
N. Yadav. Explainit!–a declarative root-cause analysis engine for time
series data. In Proceedings of the 2019 International Conference on
Management of Data, pp. 333–348, 2019.

[29] S. P. Kesavan, T. Fujiwara, J. K. Li, C. Ross, M. Mubarak, C. D. Carothers,
R. B. Ross, and K.-L. Ma. A visual analytics framework for reviewing
streaming performance data. In 2020 IEEE Pacific Visualization Sympo-
sium, pp. 206–215, 2020.

[30] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain: debugging
mapreduce job performance. arXiv preprint arXiv:1203.6400, 2012.

[31] A. Leventidis, J. Zhang, C. Dunne, W. Gatterbauer, H. Jagadish, and
M. Riedewald. Queryvis: Logic-based diagrams help users understand
complicated sql queries faster. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 2303–2318, 2020.

[32] J. K. Li, T. Fujiwara, S. P. Kesavan, C. Ross, M. Mubarak, C. D. Carothers,
R. B. Ross, and K.-L. Ma. A visual analytics framework for analyzing par-
allel and distributed computing applications. In 2019 IEEE Visualization
in Data Science, pp. 1–9, 2019.

[33] H. Liu, B. Tang, J. Zhang, Y. Deng, X. Yan, X. Zheng, Q. Shen, D. Zeng,
Z. Mao, C. Zhang, et al. Ghive: accelerating analytical query processing
in apache hive via cpu-gpu heterogeneous computing. In Proceedings of
the 13th Symposium on Cloud Computing, pp. 158–172, 2022.

[34] H. Liu, B. Tang, J. Zhang, Y. Deng, X. Zheng, Q. Shen, X. Yan, D. Zeng,
Z. Mao, C. Zhang, et al. Ghive: A demonstration of gpu-accelerated
query processing in apache hive. In Proceedings of the 2022 International
Conference on Management of Data, pp. 2417–2420, 2022.

[35] P. Liu, S. Zhang, Y. Sun, Y. Meng, J. Yang, and D. Pei. Fluxinfer: Auto-
matic diagnosis of performance anomaly for online database system. In
2020 IEEE 39th International Performance Computing and Communica-
tions Conference, pp. 1–8, 2020.

[36] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu, et al. Diagnosing root causes of intermittent slow queries in
cloud databases. Proceedings of the VLDB Endowment, 13(8):1176–1189,
2020.

[37] S. Malik, B. Shneiderman, F. Du, C. Plaisant, and M. Bjarnadottir. High-
volume hypothesis testing: Systematic exploration of event sequence
comparisons. ACM Transactions on Interactive Intelligent Systems, 6(1):1–
23, 2016.

[38] L. Micallef, G. Palmas, A. Oulasvirta, and T. Weinkauf. Towards percep-
tual optimization of the visual design of scatterplots. IEEE Transactions
on Visualization and Computer Graphics, 23(6):1588–1599, 2017.

[39] D. Moritz, D. Halperin, B. Howe, and J. Heer. Perfopticon: Visual query
analysis for distributed databases. In Computer Graphics Forum, vol. 34,
pp. 71–80, 2015.

[40] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.
Vampir: Visualization and analysis of mpi resources. 1996.

[41] V. G. Pinto, L. Stanisic, A. Legrand, L. M. Schnorr, S. Thibault, and
V. Danjean. Analyzing dynamic task-based applications on hybrid plat-
forms: An agile scripting approach. In 2016 Third Workshop on Visual
Performance Analysis, pp. 17–24, 2016.

[42] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.
Apache tez: A unifying framework for modeling and building data process-
ing applications. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 1357–1369, 2015.

[43] S. A. Sakin, A. Bigelow, R. Tohid, C. Scully-Allison, C. Scheidegger, S. R.
Brandt, C. Taylor, K. A. Huck, H. Kaiser, and K. E. Isaacs. Traveler: Nav-
igating task parallel traces for performance analysis. IEEE Transactions
on Visualization and Computer Graphics, 29(1):788–797, 2022.

[44] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:
Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012.

[45] C. Sigovan, C. W. Muelder, and K.-L. Ma. Visualizing large-scale parallel
communication traces using a particle animation technique. In Computer
Graphics Forum, vol. 32, pp. 141–150, 2013.

[46] A. Simitsis, K. Wilkinson, J. Blais, and J. Walsh. Vqa: vertica query ana-

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

163shen eT AL.: QeVIs: MuLTI-grAIned VIsuALIzIng of dIsTrIbuTed Query execuTIon

lyzer. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, pp. 701–704, 2014.

[47] J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Visual, log-based
causal tracing for performance debugging of mapreduce systems. In 2010
IEEE 30th International Conference on Distributed Computing Systems,
pp. 795–806, 2010.

[48] J. Teoh, M. A. Gulzar, G. H. Xu, and M. Kim. Perfdebug: Performance
debugging of computation skew in dataflow systems. In Proceedings of
the ACM Symposium on Cloud Computing, pp. 465–476, 2019.

[49] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–1629,
2009.

[50] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy. Hive-a petabyte scale data warehouse using hadoop.
In 2010 IEEE 26th International Conference on Data Engineering, pp.
996–1005, 2010.

[51] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, pp. 1–16, 2013.

[52] J. Wu, Z. Guo, Z. Wang, Q. Xu, and Y. Wu. Visual analytics of multivariate
event sequence data in racquet sports. In 2020 IEEE Conference on Visual
Analytics Science and Technology, pp. 36–47, 2020.

[53] C. Xie, W. Xu, and K. Mueller. A visual analytics framework for the
detection of anomalous call stack trees in high performance computing
applications. IEEE Transactions on Visualization and Computer Graphics,
25(1):215–224, 2018.

[54] D. Y. Yoon, N. Niu, and B. Mozafari. Dbsherlock: A performance di-
agnostic tool for transactional databases. In Proceedings of the 2016
International Conference on Management of Data, pp. 1599–1614, 2016.

[55] X. Zhao, Y. Wu, W. Cui, X. Du, Y. Chen, Y. Wang, D. L. Lee, and H. Qu.
Skylens: Visual analysis of skyline on multi-dimensional data. IEEE
Transactions on Visualization and Computer Graphics, 24(1):246–255,
2017.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 05,2024 at 12:48:43 UTC from IEEE Xplore. Restrictions apply.

